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Corrections to Molecular Simulations: Fundamentals and Practice 

By Saman Alavi 
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The one-dimensional motion of a mass subject to the Lennard-Jones potential placed at five 

initial placements of the mass at positions near r*(0) = r(0)/σ = 1, with initial momentum of 

p*(0) = 0 are shown in Figure 1.4(b). 
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For the object moving perpendicular to the surface of the earth under the operation of a velocity-

dependent atmospheric drag force, Newton’s second law is, 
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At long times, the velocity approaches the so-called the terminal velocity +mg/b.  
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Using diagrams introduced by Michael P. Allen and Dominic J. Tildesley, the flow of Euler’s 

method is shown schematically in Figure 2.6.  

***** 

Page 21 

In the leap-frog algorithm, the Taylor expansion of the velocity, Eq.(2.27) is written for half time 
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If the positions (and thus forces) and velocities are known as some time t0, the Euler relations for 

the motion of the N-atom system are, 
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This connection is explored in Chapter 6 after concepts of statistical mechanics are introduced. 
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The Lagrangian is written in terms of coordinates, q, and their conjugate velocities, q  of the 

particles in the system. 
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Determining the second derivatives of Rcm and rrel from Eq. (2.A.3) and using Eq.(2.A.1) gives 

two new equations of motion for the center of mass and relative motion, 
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In the new coordinate system, the motion of the center of mass and relative coordinates are not 

coupled. 
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The Lagrangian equations of motion Eq. (2.43) for this system become 
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Chapter 3 
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In classical mechanical molecular dynamics or Monte Carlo simulations, this assumption is still 

used, but provisions are made so that the forces incorporate aspects of quantum mechanical 

behaviour which are needed to accurately model the system.  
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A crucial approximation, which provides the justification for introducing the familiar classical 

ball-and-spring type of intramolecular potentials between atoms in classical molecular 

simulations, is the Born-Oppenheimer approximation named after the physicists Max Born and J. 

Robert Oppenheimer (1927). 
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This mass ratio is close to that of the mass of a typical bowling ball (~6 kg) to a ping-pong ball 

(~3 g) which is ~2000. An electron and nuclei interact with the same Coulombic force and gain 

the same acceleration from their interaction but the mass of the electrons is so much smaller that 

they will move much faster in molecules than the nuclei. 
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The value of (0) 1 2g   is determined from Eq.(4.A.2) and the normalization condition of 

the Gaussian function.  
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This is an example of importance sampling where random numbers sampling the “importance 

function” F(x), can be mapped back onto the x-values to generate the onto probability 

distribution f(x). 
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Figure 6.1. The seven possible distributions (microstates) of five molecules among available 

one-molecule quantum states in a hypothetical system with a total energy Etot = 5Δ. 

*** 
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The values of the degeneracy of each distributionmicrostate are given in Table 6.1. 

*** 
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By adding two additional molecules to the system, the numbers of possible distributions and 

corresponding microstates have increased substantially from 7 to 15, and from 216 to 1716, 

respectively. 

*** 
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The probability for this distributionmicrostate is significantly greater than many of the other 

distributionsmicrostates in this macrostate. 
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For macroscopic systems with molecules of the the order of 10
23

 or so, the most probable 

distribution has such a overwhelmingly larger probability that the contributions of other 

distributionsmicrostates can effectively be neglected in determining system properties. 

*** 
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There can be many distributionsmicrostates with N molecules distributed among the quantum 

states εi such that the total system macrostate has an energy EN. 

*** 
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Any distribution of the ensemblesystem among the states must satisfy the conditions, 
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Both Aj in the first sum should have j as subscript. 
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… and the macroscopic energy of the system in the ensemble effectively becomes … 

*** 

Page 161 

( , )/

( , )/

( , , )

( , , )

( , , )

E V N kTPV kT j

V j

PV kT E V N kT

V E

PV kT

V

N P T e e

e N V E e

Q N V E e



 



 

 



 

 



 

*** 

Page 162 

It is more convenient to express the thermodynamic variables in the isothermal-isobaric 

ensemble in terms of ln ( , , )N T P . 
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Chapter 7 

Page 179 

Upon a system volume change, after first scaling the molecule center of mass positions in 

fractional coordinates, they are transformed back to Cartesian coordinates and then the new 

internal atomic positions are determineds are positioned with respect to the new center of mass 

position according to Eq. (7.1). 

*** 

Page 182 

“…velocity-dependent drag force in friction and hydrodynamics with p/W playing the role of a 

time-dependent drag constant, see Sec. 2.32.4.” 

*** 

Page 189 

This value is used in Eq. (7.26) and allows the calculation of a second estimate v
(2)

(t) (fourth line 

of Eq. (7.26)), which can be reused to get the second estimate T
(2)

(t). 

*** 

Page 190 

To compare the behavior of the system temperature under the operation of the Nose-Hoover and 

Berendsen thermostats, consider simulations performed on a system of 8000 atoms interacting 

with a Lennard-Jones potential discussed by Berck Hess. 

*** 

Page 190 

The action of the Nosé-Hoover thermostat with a reduced oscillation period of 

   * 1t t m    and a Berendsen thermostat with scaling time constant of * 0.5T    are 

shown in Fig. 6.5.  

*** 

Page 192 

This shows that average kinetic energy per molecule and therefore the temperature associated 

with the average energy show finite fluctuations for the ideal gas and this also holds in the 

canonical ensemble. Isokinetic methods which scale the average kinetic energy per molecule to 
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exactly correspond to the desired external temperature will not give a canonical ensemble 

distribution function. Equation (7.28) can be used to determine the expression for the 

fluctuations in temperature. Using the definition of temperature associated with the average 

kinetic energy per molecule,  


N

i iK kmvNT
1

2 3/)/1( , we determine,  
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In the limit of very large systems, the fluctuations in temperature go to zero, but in simulations of 

finite systems, even “constant temperature” molecular dynamics simulations show temperature 

fluctuations when measured by the average molecular kinetic energy. 

 

A simple approach to applying a thermostat and barostat together may seem to be the 

simultaneous combination of the Andersen barostat and Nosé thermostat Hamiltonians for a 

system as given in  Eqs. (7.115) and (7.2523). 

*** 
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These six values are used in Eq. (7.36) and allow the calculation of a second estimate v
(2)

(t) and 

r
(2)

(t+Δt/2) (sixth and seventh lines of Eq. (7.36)), which can be reused to get the second set of 

estimates T
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Page 208 
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Chapter 9 

Page 241 

At short times the displacement has time dependence similar to a mass moving under a constant 

(gravitational) force given in Eq. (2.4) of Sec. 2.23.1 and is called the “ballistic motion regime”. 

*** 

Page 252 

In a gas sample, collisions with other molecules in the gas change the orientation of the molecule 

and dampen the rotational motion and therefore lead to the decay of the amplitude of the 

oscillations in u(t)·u(0) u(t)·u(0) (see Figure 9.10(a)). 

*** 

Page 263 

“As discussed Sec. 2.23.4, the operation of a drag force causes the velocity of a mass to decay 

…” 

*** 
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“In the short time limit, 
te 
→ 1 – ζt and …” 
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Chapter 10 

Page 260 

“…, which allows calculation of average values of macroscopic mechanical and thermodynamic 

variables.” 

*** 
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*** 

Page 279 

“Gas adsorption can be studied more efficiently using the grand canonical Monte Carlo (GCMC) 

simulation technique …” 

*** 

Page 293 

“(X) X is the (as of yet unknown) average value of collective property X and X is the standard 

deviation of the distribution of the average. The X(X) can be considered …” 
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This is a special application of the central limit theorem for the collective variable X defined in 

Eq. (10.43), which is the average of the individual stochastic variables xi.  

 

To clarify this analysis, consider an example suggested by Sachin Shanbhag [271]. 


